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Abstract—Expanders are graphs that are sparse, yet highly
connected. They have a wide range of applications in networking,
coding theory, cryptography, and complexity theory. Theoretical
constructions of vertex expanders do exist, but are complex and
not optimal in parameters. Through an exploration of small
unique-neighbour bipartite expanders, we find that the absolute
performance metric k increases as graphs become larger, but the
size-adjusted performance metric k/|L| decreases exponentially.
Graphs with higher degree have better size-adjusted perfor-
mance, but exhibit similar exponential decrease. By exhaustive
search, we find that certain values of absolute performance k are
unattainable for given size-degree pairs, and only increasing the
degree makes them attainable. For the exploration, we develop
algorithms to determine the performance-metric k for given
graphs with O(2|L|) worst-case performance and good average-
case performance.

Finally, we present two constructions (iterative and geomet-
ric) of unique-neighbour bipartite expanders based on guided
random search, with performance metrics better than random
graphs. The geometric construction exploits a novel correspon-
dence between objects in n-dimensional spaces and bipartite
graphs to obtain large graphs with good k.

I. INTRODUCTION

Expanders are graphs that are sparse, yet highly connected.
Intuitively, they have O(n) edges but have the connectivity
properties of graphs with O(n2) edges. Surprisingly, such
graphs do exist and are in fact common [1].

Furthermore, expanders have wide-ranging applications, and
have been used to build robust communication networks
[2], design efficient error-correcting codes [3], pseudorandom
number generators [4] and hash functions [5], and prove
important results in complexity theory [6].

Fundamentally, expansion is a graph connectivity property,
and it can be defined in different ways, depending on the
use for which the graph is intended. Robust communication
networks, for example, often require edge expansion — every
set of vertices needs to have many outgoing edges. Other
applications, such as linear codes or routing algorithms, rely
on vertex expansion — all sets of vertices need to have many
external neighbours.

In this work, we only consider vertex expansion. In partic-
ular, we look at bipartite vertex expanders with the unique-
neighbour property, as seen in definition I.1.

Intuitively, having unique-neighbours is desirable because
their presence to a certain degree guarantees expansion. Con-
sider the following: starting from an arbitrary set of right-
vertices S ⊆ R, if we follow an edge into a unique-neighbour
v ∈ N(S), and then follow any other edge that goes out
of v, we are guaranteed to reach a right-vertex outside of
our original S. A k-unique neighbour expander provides this
guarantee for every S ⊆ R that has fewer than k neighbours.

Definition I.1 (k-unique neighbour bipartite expander). A
bipartite graph G = (L,R,E) is a k-unique neighbour
expander iff:

∀S ⊆ R, |N(S)| < k, ∃v ∈ N(S), |N(v) ∩ S| = 1

where N is the neighbour function:

N(S) = {y | x ∈ S and (x, y) ∈ E}

N(x) = {y | (x, y) ∈ E}

Importantly, given a set S, determining which of its neigh-
bours is an unique-neighbour can be done using only local
information, i.e. using only knowledge of the edges coming
out of S. This property of locality, for example, is crucial for
the design of efficient routing algorithms.

Unique-neighbour expanders are desirable for many appli-
cations. Whilst theoretical constructions of expanders exist,
they are complex and not optimal in parameters. In this
project, we explore the space of small graphs in search of
unique-neighbour expanders with a high value of k, hoping
that insights at small scale might point towards methods
to construct large expanders with good parameters. We find
that the absolute performance metric k increases as graphs
become larger, but the size-adjusted performance metric k/|L|
decreases exponentially, and this behaviour is exhibited re-
gardless of the degree of the graph — which suggests that
finding large graphs with high k and low d via random search
is infeasible. The results of our exploration are described fully
in section III. Efficient algorithms to determine the highest
value of k a graph admits are crucial for the search.

Given a graph, we want to be able to determine the largest
value of k for which the graph is a k-unique neighbour
expander. Directly using definition I.1 yields an algorithm to
find k by enumerating over all subsets of R. However, this is
inefficient for most of the graphs we are interested in, which
have |R| > |L|. We overcome this inefficiency by coming up
with an alternative but equivalent definition, which we discuss
in section IV.

Finally, we develop two constructions (iterative and ge-
ometric) of unique-neighbour bipartite expanders based on
guided random search, which we discuss in sections V and VI,
respectively. In particular, the geometric construction is based
on a novel correspondence between objects in n-dimensional
spaces and bipartite graphs, and performs a guided search on
these objects. Both constructions generate graphs with better
values of k than those exhibited by random graphs. These
constructions are compared in section VII.
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II. RELATED WORK

Throughout the years, many methods have been developed
to identify and construct expanders.

Identification of expansion was originally suggested by Alon
[7]. He claimed that randomly generating a graph and applying
his method to that graph could give a much better result
than the state of the art construction of that time (Margulis’s
construction [8]). Alon’s theorem suggests that if the second
largest eigenvalue of the adjacency matrix of a graph is close
to zero, the graph has good expansion. A number of extensions
were added later to the second largest eigenvalue method to
improve its efficiency and applicability.

Czumaj and Sohler [9] proposed an algorithm that performs
a number of random walks over the graph and counts the num-
ber of collisions of the walks as a measurement of expansion.
This is a simple method, but can lead to false positive results,
thus it is a non-deterministic method of proving expansion.
Blum et al. [10] proved that deterministically identifying
whether or not a graph is an expander is a coNP-complete
problem.

The first expander graph construction algorithm was intro-
duced by Margulis [8]. This work was later on expanded by
Angluin [11] and Gabber and Galil [12]. These constructions
are algebraic constructions, as they produce graphs from
the structure of an algebraic group. Ajtai proposed a new
recursive, combinatorial method [13]. Combinatorial construc-
tions rely on operations that combine graphs (graph products),
to produce large expanders from smaller expanders. After
Ajtai, Reingold et al. developed the zig-zag product [14], an
improved graph product that preserves expansion properties.

Relatively little work has been dedicated to studying unique-
neighbour expansion, both in terms of quantifying such expan-
sion and constructing unique-neighbour expanders.

The tools for identifying expansion in a graph are not power-
ful enough to guarantee unique-neighbour expansion. Unique-
neighbour expanders are a strict subset of vertex expanders
[15], meaning not all vertex expanders are necessarily unique-
neighbour expanders. Neither the second largest eigenvalue
method, nor the random walk method can identify unique-
neighbour expanders.

Alon and Capalbo [16] present a construction algorithm
for slightly-unbalanced bipartite unique-neighbour expanders.
However, this construction only produces graphs with |L| =
21/22 × |R|, whereas some applications require |R| to be
significantly larger than |L|.

Capalbo et al. have shown that lossless expanders are also
unique-neighbour expanders [17], although not necessarily
good ones. Ta-Shma [18], Alon [16], and Guruswami [19] have
each proposed constructions of lossless bipartite expanders,
both in the balanced and unbalanced case, and Guruswami’s
construction produces graphs with parameters polynomially
close to the optimum.

The definition of unique-neighbour expansion we use in this
report, definition I.1, differs slightly from the usual definition
in the literature, given below.

Definition II.1. ((α, ε)-Unique Neighbour Bipartite Ex-
pander) A bipartite graph G = (L,R,E) is a (α, ε)-unique
neighbour bipartite expander iff for some α, ε > 0:

∀S ⊆ R, |S| < α|R|, |Nunique(S)| ≥ ε|S|

where

Nunique(S) = {v ∈ N(S), |N(v) ∩ S| = 1}

While definition I.1 and definition II.1 differ, they are
closely related. Our definition requires each set with a ‘not
too large’ neighbour set (i.e. |N(S)| < k) to have at least one
unique neighbour, whereas the standard definition measures
the size of the originating set (i.e. |S| < α|R|) and requires at
least a constant fraction of unique neighbours. We motivate
this difference by noting that our definition gives a direct
measure of the kind of performance we are interested in,
namely size of neighbour-sets that admit unique neighbours.

III. RANDOM GRAPH EXPLORATION

One part of our project was to explore the space of small
graphs in search of expanders, with the hope that insights
from small expanders might help us find a way to efficiently
construct good expanders of larger size, where random search
ceases to be effective. In the following, we describe our
process for exploring small expander graphs and detail some
key findings. We were particularly interested in answering the
following questions:

1) How do the dimensions of the graph affect the expected
value of k?

2) In regular graphs, how does the degree of the graph
affect expected k?

3) Does the distribution of k differ between regular and
biregular graphs respectively? In other words, does
“more regularity” correlate with larger expected values
of k?

4) Do small expanders with high values of k have any
distinguishable features that we can discern and perhaps
extrapolate to larger graphs?

Our method for answering these questions is straightfor-
ward: we generate large numbers of random graphs and for
each of them compute the value of k. However, there are
two issues with this method. Firstly, it is constrained by the
speed of the algorithm we use to determine the value of k.
Section IV details how we significantly improved the average-
case performance of determining k for given graphs in order
to make this exploration feasible for small graphs. Secondly,
as the sizes of the graphs we explore increase, the number of
possible graphs of that size grows exponentially. Thus, even
if computing k were a constant-time operation, if we wanted
to get statistically accurate expected values of k, we would
have to generate hundreds of trillions of graphs. Despite these
limitations, our straightforward method does give us answers,
at least for small graphs.

If we keep the ratio r = |R|/|L| and the degree d constant,
we find that as we increase the size of the graph, the expected
value of k also increases, albeit slightly. If we then start
increasing the degree, whilst still keeping r constant, we find
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Fig. 1. The expected value of k increases as |L| increases if we keep r =
|R|/|L|. Note that curves with a higher d increase at a faster rate. Obtained
by sampling 50,000 random d-regular bipartite graphs for each point on each
curve.

that the rate of increase of the expected value of k increases as
well. This is shown in figure 1, where all curves are increasing,
and higher curves have steeper inclinations.

The fact that larger graphs have higher expected values of
k may seem surprising, but it is in fact natural. Small graphs
are prevented by their size from having large values of k. As
the graph size increases, higher values of k become possible
and start appearing in samples, slowly shifting the expected
value upwards. Similarly, having a higher degree gives you
the chance to exhibit higher values of k more often, which
explains both the fact that curves shift upwards with higher d
and that higher curves have steeper inclinations.

If, however, we look at the ratio between expected k and
|L|, the picture is very different. Expected k/|L| decreases
exponentially as the size of the graph increases, as can be
seen in figure 2. Moreover, the shape of the curves for k/|L|
is similar for different degrees if r is kept constant. This
suggests that graphs with values of k close to |L| are rare,
and become exceedingly rare (and possibly non-existent) as
we start looking at larger graphs.

The fact that higher degrees only shift the curve upwards,
without significantly altering its shape (as seen in figure 3)
indicates that there is little hope for obtaining large random
graphs with very good k — if we want a random graph with k
close to |L|, we either have to make d close to |L| or generate
a very, very large number of graphs and hope that we hit
an extreme outlier. This can also be seen in figure 4, which
shows the full distribution of k obtained from a sample of
50,000 random graphs of size 15 by 20 — graphs with high
k become exceedingly rare (or possibly non-existent), and we
can only obtain a higher k by increasing d.

We know for a fact that extreme outliers do not always exist.
For example, we have exhaustively enumerated all graphs of
degree d = 3 with |L| = 6 and |R| = 12, and found that k = 4
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Fig. 2. Expected value of k/|L| in terms of |L| obtained by generating 50,000
random d-regular bipartite graphs with r = |R|/|L| and d ∈ {3, 5}. Notice
that the scale for the y-axis is different in the two plots — a higher degree
moves all the curves upwards (better k), but preserves their shape.

is the largest for graphs with these parameters. However, we
know that graphs of the same size with d = 4 can have k = 5.
This proves that some high values of k are not achievable for
some small degrees, though we do not know the exact nature
of the relationship between graph size, degree, and maximum
attainable k or k/|L|. Plotting the maximum value of k/|L|
we obtain after generating 50,000 d-regular random graphs,
as seen in figure 5, yields no discernible pattern. If we were
to keep r fixed and change d, we would see the same curve-
shifting behaviour seen in figure 3.

Interestingly, we find that biregular graphs have better
distributions of k than regular graphs, and thus better expected
values of k. However, they have the same maximum value of
k in a sample of 50,000 random graphs. This is shown in
figure 6. More structure and regularity within the graphs we
generate tends to correlate with better expected values of k.
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Fig. 3. Keeping the size of graph constant, increasing d shifts the k/|L|
curve upwards, i.e. towards better values of k.

Despite our initial hopes, manually examining small graphs
with high k yields no discernible features that could be
extrapolated to obtain larger graphs with high k. Nonetheless,
our exploration of small graphs has helped us uncover some
interesting facts about unique-neighbour expanders:

1) Larger graphs (larger |L| and fixed r) have higher
expected values of k, but lower expected values of k/|L|.

2) Increasing the degree moves the k/|L| curve upwards
and shifts distributions towards higher values of k.

3) Increasing the degree not only increases the expected
value of k, but also increases the rate of increase of the
expected value of k.

4) Biregular graphs have better distributions of k than
regular graphs, but not better maximum values of k.

5) Some high values of k are not attainable for graphs with
low degrees, but we do not know the exact relationship.

IV. COMPUTING k

We explored two different approaches for computing k for
given graphs, based around subsets of either L or R. They
have different time complexities, and the best method to use
depends on the shape of the graph.

A. R-subset checker

The value of k can be computed by enumerating all possible
subsets of R. This method is suited for graphs where |L| and
|R| are of similar size.

The value of k returned is the same no matter which order
the sets are enumerated in. In addition to this, some subsets
can be skipped whilst checking. To do so, a breadth-first search
can be done on the subsets of R in order to enumerate them in
increasing size. Once a set F ⊆ R without a unique neighbour
has been found, only sets where |N(S)| < |N(F )| must be
checked.
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Fig. 4. Distribution of k obtained by generating 50,000 random d-regular
bipartite graphs with |L| = 15 and |R| = 20. All values of k shown on the
x-axis were found in the sample, but some of them appear only with very
small probability (hence the seemingly non-existent bars).
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Fig. 5. Maximum value of k/|L| in terms of |L| obtained by generating
50,000 random d-regular bipartite graphs with r = |R|/|L|. No pattern can
be discerned. Note that higher values of k might exist for graphs of these
sizes — our search is not exhaustive, and we cannot tell whether we reached
the optimum in 50,000 samples.
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Fig. 6. Distribution of k obtained by generating 50,000 random d-regular
and respectively, biregular bipartite graphs with |L| = 15 and |R| = 20.
All values of k shown on the x-axis were found in the sample. Notice that
biregularity shifts the distribution towards higher values of k.

1: function R-COMPUTEK(G = (L,R,E))
2: k ←∞
3: for all S ⊆ R do
4: if (|N(S)| < k) ∧ ¬(∃v ∈ N(S), |N(v) ∩ S| = 1)

then
5: k ← |N(S)|
6: end if
7: end for
8: return k
9: end function

The worst case run-time for this algorithm is O(2|R|). More
specifically, if enumerating the sets in order of increasing size,
the time taken on average depends on the vertex expansion of
the graph itself and the value of k:

n∑
i=2

(
|R|!

i!(|R| − i)!
× i× |L|

)
where n = max |N(S)|, S ⊆ L, |S| ≤ k.

B. L-subset checker

Definition I.1 can be redefined in terms of subsets of L:

Definition IV.1 (k-unique neighbour bipartite expander). A
bipartite graph G = (L,R,E) is a k-unique neighbour
bipartite expander iff:

∀S ⊆ L, |S| < k,

(∃v ∈ S, |N(v) ∩ (N(S) \N(L \ S))| = 1)

∨(N(S) ⊆ N(L \ S))

This can be used to compute k by enumerating all subsets S
of L, where |S| < k. This method is suited for graphs where
|R| is much larger than |L|.

This differs from the R-subset checker in that it only checks
the largest set of right-neighbours for a given S ⊆ L rather
than all of them. It will give the same value for k as the R-
subset checker, since every subset smaller than k is checked,
whilst avoiding unnecessary computations involving larger
sets. Also, it only checks the largest neighbour set in R instead
of all of the neighbour-sets for a given subset of L, which
further improves the runtime.

1: function L-COMPUTEK(G = (L,R,E))
2: k ← 1
3: repeat
4: for all S ⊆ L of size |S| = k do
5: C = N(S) \N(L \ S)
6: if (C 6= ∅) ∧ ¬(∃v ∈ S, |N(v) ∩ C| = 1) then
7: return k
8: end if
9: end for

10: k ← k + 1
11: until k > |L|
12: return ∞
13: end function

The worst-case runtime for this is O(2|L|). More specifi-
cally, since k is usually much smaller than |L|, on average it
will take:

k∑
i=1

(
|L|!

i!(|L| − i)!
× |R| × |L|

)

C. Estimation of k

We attempted to estimate k by modifying the two algorithms
to sample subsets of R and L respectively, instead of checking
all of the necessary subsets. Whilst this method can produce
an upper bound for k very quickly, it is very far from the
actual value. For example, when sampling 10% of the search
space, the bound for k found was on average 2.3 times larger
than the actual value.

V. ITERATIVE CONSTRUCTION

The L-subset checker in IV-B can be used as the basis of a
construction which produces a graph with a given k by starting
from any graph G and removing vertices from R. This can be
achieved in similar time to computing k, and is of complexity
O(2|L|).

1: function SETK(G = (L,R,E), k)
2: t← 1
3: repeat
4: for all S ⊆ L of size |S| = t do
5: C = N(S) \N(L \ S)
6: while (C 6= ∅) ∧ ¬(∃v ∈ S, |N(v) ∩ C| = 1)

do
7: delete v ∈ C from R and C
8: end while
9: end for

10: t← t+ 1
11: until t = k
12: end function

On line 7, a choice must be made as to which vertex to
delete. This choice will affect how large the resulting graph
will be. We implemented the following heuristic based on the
observation that graphs which are more regular have higher
values of k, as discussed in section III. This removes the vertex
in C which has the largest similarity to other vertices across
the entire graph.



6

50 100 150 200

5

10

15

|R|

k

1000 random graphs
L-subset construction

Fig. 7. Values of k for graphs with |L| = 40

1: for all v ∈ C do
2: vc ← 0
3: for all w ∈ N(v) do
4: vc ← vc + |N(w)|
5: end for
6: end for
7: delete v with max vc from R and C

This construction produces better values of k than our base-
line of choosing the best of n random graphs. Figure 7 shows
the results of this construction starting on the largest possible
graph with k = 4, i.e. ∀v∀w((N(v) = N(w))⇒ (v = w))

The following images shows the graph in row-column form
during the stages of this construction. The figures progress
to look more similar to the identity matrix which intuitively
makes sense, since the identity matrix is the perfect unique-
vertex expander. However, no structure that can be extrapo-
lated to larger graphs can be otherwise discerned.
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VI. GEOMETRIC CONSTRUCTION

In addition to the previous iterative construction, we propose
a geometric construction based on a mapping of objects in
n-dimensional spaces into bipartite graphs. This method can
generate 3-regular graphs with a pre-determined k-value.

A. Space Definition

We start by defining our pre-mapped geometric space which
will be later mapped into a bipartite graph.

Definition VI.1 (Pre-Mapped Space). A Pre-Mapped Space
S(P,A, T ) is a 3-tuple consisting of a set of points P , a set
of arcs A ⊆ P 2 and a set of triangles T ⊆ {(p0, p1, p2) ∈
P 3 such that ((p0, p1), (p1, p2), (p2, p0)) ∈ A3}.

These spaces can be divided into subspaces. We define a
subspace as follows.

Definition VI.2 (Pre-mapped Subspace). A space
S ′(P ′, A′, T ′) is a subspace of S(P,A, T ) if and only
if P ′ ⊆ P and A′ ⊆ A and T ′ ⊆ T .

Some subspaces are connected triangular polyhedrons,
which are three or more dimensional polyhedrons with only
triangular 2-dimensional faces. They are defined as follows:

Definition VI.3 (Connected Triangular Polyhedron). A con-
nected triangular polyhedron in a space S(P,A, T ) is a space
S ′(P ′, A′, T ′), which is a subspace of S and for which it
holds that ∀(a1, a2) ∈ A′ : ∃(p1, p2) ∈ (P ′)2 such that
p1 6= p2 ∧ ((a1, a2, p1), (a1, a2, p2)) ∈ (T ′)2

Some examples of three-dimensional polyhedrons are
shown in Figure 8. In every space, there may exist zero, one
or many smallest polyhedra. They are defined as follows:

Definition VI.4 (The Smallest Polyhedron). The smallest
polyhedron in a space S is the subspace with the lowest
number of arcs which is a connected triangular polyhedron.

B. Space Mapping

We propose the following mapping from S to a bipartite
graph. This constructs a graph G = (L,R,E) where each
element of L represents an arc from A, each element of R
represents a triangle from T and each edge in E signifies if
an arc from the left set is in the triangle from the right set.

This mapping can be performed in O(n3) time, where n is
the size of P .
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1: function MAP(S(P,A, T ))
2: L,R,E ← ∅, ∅, ∅
3: G← (L ∪R,E)
4: for all (p0, p1, p2) ∈ T do
5: L′ ← {(p0, p1), (p1, p2), (p0, p2)}
6: R′ ← {(p0, p1, p2)}
7: R← R ∪R′
8: L← L ∪R′
9: E ← L ∪ (L′ ×R′)

10: end for
11: return G
12: end function

Theorem VI.5. The graph obtained by the mapping space S
is a k-expander if and only if the smallest polyhedron in S
has k arcs.

Proof. According to Definition I.1, the graph obtained is a k-
expander if and only if a set S ⊆ R with no unique neighbours
has N(S) of size k. Take any such set S. It maps to a collection
of triangles T ′. Those triangles are made up entirely of arcs
that map to N(S), call it A′. Name the set of all points needed
to construct these edges and triangles P ′. These sets together
form a subspace S ′(P ′, A′, T ′). We must prove that S ′ is
in fact a polyhedron with k arcs and that it is the smallest
polyhedron in S.

We start by proving that S ′ is a polyhedron with k arcs. For
any element in N(S) there exist at least two elements in S of
which it is a neighbour. This means that in S ′, for every arc a
in A′, there exist at least two unique triangles in T ′, each of
which consists of the two points in a and a unique third point
in P ′. This, according to Definition VI.3, means that S ′ is a
polyhedron. The number of arcs in S ′ is |A′| = |N(S)| = k.

We prove the second part by contradiction. Assume
S ′ is not the smallest polyhedron. Therefore there exists
S∗(P ∗, A∗, T ∗) which is a subspace of S and a polyhedron
with strictly fewer arcs than S ′. T ∗ will map to a set S∗ ⊆ R
with the neighbouring set of N(S∗) which only consists of
mappings from the arcs in A∗. This means that N(S∗) < k.
It is also true, according to Definition VI.3, that each arc in
A∗ neighbours at least two triangles in T ∗, which implies that
each element of N(S∗) neighbours at least two elements in
S∗. Therefore, we have found a subset S∗ ⊆ R such that
|N(S∗)| < k and no neighbour of S∗ is a unique neighbour.
This means that the bipartite graph obtained from the mapping
has a k-value strictly lower than its k-value, which is a
contradiction. Therefore, our assumption must be wrong and
S ′ is the smallest polyhedron in space S.

By combining part one and two of this proof, we can
conclude that the graph obtained by the mapping the space
S is a k-expander if and only if the smallest polyhedron in S
has k arcs.

This means that if we manage to construct a space with a
good ratio of triangles to arcs and a large smallest polyhedron,
we can map it in polynomial time to a good unique neighbour
bipartite expander.

C. Constructions of Pre-Mapped Spaces with k=6
To obtain a 3-regular graph which has k = 6, we create a

space where the smallest triangular polyhedron has 6 edges.
The only such polyhedron is a tetrahedron with 4 triangles (See
figure 8). This means that the graph produced by our mapping
would be of size 6 × 4. However, we can combine many
polyhedrons to obtain shapes with a better ratio r = |R|/|L|.
One way of doing this is to construct n-dimensional spaces
in which the objects form an n-simplex – an n dimensional
equivalent of a tetrahedron. The construction of such a shape
is straightforward. A vertex diagram of an n-simplex is a
complete graph with n + 1 nodes. Therefore, we have to
introduce n+1 points, connect all pairs of those points with an
arc and add a triangle to all triplets of points. This takes O(n3)
time, where n is the number of dimensions in the space we are
constructing. The smallest subspace that forms a polyhedron
of each of those will always be a tetrahedron – the k will
remain at 6. The number of triangles and edges does increase,
but the ratio between the two improves as shown in Table I.

TABLE I
SIZE OF GRAPH WITH SIZE K WHEN CONSTRUCTED FROM AN n-SIMPLEX

n dimensions |A| AND |L| |T | and |R|
3 6 4
4 10 10
5 15 20
6 21 35
7 28 56

D. Increasing k
We propose a method of increasing the value of k of a

pre-mapped space S by removing certain triangles. Firstly
the space is analysed to find any subspaces S ′ which are
a polyhedron with less than 15 arcs. Figure 8 shows these
polyhedra. We then remove one triangle in each such subspace
from S. This will result in the smallest polyhedron in S having
at least 15 edges, and k being greater than 15. We propose a
set of algorithms that start with a space where the smallest
polyhedron has k edges, and produces a space where the
smallest polyhedron has k + 3 edges.

a) Increasing k from 6 to 9: To increase k from 6
to 9, we must eliminate a triangle from all subspaces that
are tetrahedrons. We can do that by following the procedure
bellow:

1: function K9(S(P,A, T ))
2: for all (p1, p2, p3, p4) ∈ R4 do
3: A′ ← {p1, p2, p3, p4}2
4: T ′ ← {p1, p2, p3, p4}3
5: if A′ ⊆ A ∧ T ′ ⊆ T then
6: T ← T − {RANDOM(T ′)}
7: end if
8: end for
9: return S(P,A, T )

10: end function
For this algorithm we choose a random triangle to remove.
This space modification can be achieved in O(n4) time, where
n is the number of points in P .
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Fig. 8. Polyhedra with 15 or fewer arcs

b) Increasing k from 9 to 12: Now, we must eliminate all
3-bipyramids from the space. This can be achieved by noting
that the subspace, in order to be a 3-bipyramid, must contain
a set of three points that do not have a triangle in the middle.
The procedure goes as follows:

1: function K12(S(P,A, T ))
2: for all (p1, p2, p3) ∈ P 3 − T do
3: for all (p4, p5) ∈ (P − {p1, p2, p3})2 do
4: A′ ← {p1, p2, p3, p4, p5}2
5: T ′ ← {p1, p2, p3}2 × {p4, p5}
6: if A′ ⊆ A ∧ T ′ ⊆ T then
7: T ← T − {RANDOM(T ′)}
8: end if
9: end for

10: end for
11: return S(P,A, T )
12: end function
Again we choose a random triangle to remove. This space
modification can be achieved in O(n5) time, where n is the
number of points in P ; however, its average case is much
faster.

c) Increasing k from 12 to 15: By examining the 4-
bipyramid, one can see that it is symmetric over all axes in a
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|R|
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k ≥ 18

Fig. 9. Values of |L| and |R| for graphs constructed with different k values

Cartesian coordinate system. This helps us reduce the average
case by using the procedure outlined with the following
pseudocode:

1: function K15(S(P,A, T ))
2: for all ((p1, p2), (p3, p4), (p5, p6)) ∈

(
P 2
)3 do

3: T ′ ← {p1, p2} × {p3, p4} × {p5, p6}
4: A′ ← {p1, p2} × {p3, p4, p5, p6}
5: A′ ← A′ ∪ {p3, p4} × {p5, p6}
6: if A′ ⊆ A ∧ T ′ ⊆ T then
7: T ← T − {RANDOM(T ′)}
8: end if
9: end for

10: return S(P,A, T )
11: end function
Again we choose a random triangle to remove. This procedure
has the worst case runtime of O(n6) time, where n is the
number of points in P . The average case is reduced if the
edge and triangle checking is performed during the selection
of pairs of points, rather than after.

E. Implementation

We combined these procedures to firstly generate an n-
simplex, and then modify it by removing triangles as detailed
previously. This results in graphs with a good ratio r =
|R|/|L|, with a value of k of at least 15. This can run within
realistic time constraints even for graphs with |R| ≈ 400. We
have also implemented the elimination of polyhedra with 15
arcs to even further increase k, however, those did not produce
graphs with a good ratio r. Figure 9 shows the graph sizes
obtained using this method.

VII. ANALYSIS AND DISCUSSION

In this section we analyse the results of our exploration and
evaluate our constructions.

We found that while larger graphs have a higher expected
value of k, the expected value of k/|L| drops exponentially
with the size of the graph. Moreover, this exponential decrease
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in expected k/|L| is exhibited no matter the degree of the
graphs we generate. This suggests that random search is not
a feasible method for finding large graphs with low degree
and values of k close to |L|. However, we don’t know the
exact nature of the relationship between graph size, degree
and maximum value of k. It might be the case, for example,
that the maximum values of k we found for small graph sizes
after 50,000 samples are indeed the maxima for these sizes.
If that were true, extrapolating from what we have seen in the
small-scale would suggest that maximum k/|L| goes towards
0 as |L| increases (if the degree is kept constant). In other
words, it would suggest that large graphs with low d and k
close to |L| do not exist, rather than simply being exceedingly
rare. Nonetheless, some insights from the exploration, such as
the fact that more regularity correlated with better expected k,
might be helpful in designing constructions.

We have had relative success in speeding-up the naive com-
putation of the highest-admitted value of k for a given graph.
Introducing definition IV.1 meant that we could implement the
L-subset checker, which checks left-sets in increasing order
of size and terminates as soon as it finds a counterexample.
This property of early termination significantly improves the
average-case running time of the checker (as most graphs have
relatively small k), and indeed, is what made our exploration
of random graphs feasible. By contrast, our attempt to estimate
k rather than exactly compute it did not produce useful results,
as estimation only provides a broad upper bound on the actual
value of k for the given graph.

From the constructions we developed, our iterative con-
struction gives the best results, and can construct k-expander
graphs in similar time to our method of computing k. Both of
these algorithms have an exponential runtime, which means
they are only applicable to small-sized graphs. Our geometric
construction is also limited to generating graphs of relatively
small k (with a maximum of |R| = 400, |L| = 250, d = 3 and
k = 15). However, both constructions exhibit better behaviour
than random graphs at least for some sizes.

VIII. CONCLUSION AND FUTURE WORK

In this work, we carried out an exploration of small k-
unique-neighbour expanders, gaining some important insights
about their properties, and we developed two constructions
which exhibit better performance metrics than random graphs.

However, k-unique-neighbour expansion is a relatively un-
explored area, and there is much work still to be done. For
example, the mapping between n-dimensional spaces and bi-
partite graphs is novel. Further exploration in the area of multi-
dimensional spaces with good triangle to edge ratio is needed.
It might uncover significantly better, potentially even explicit
constructions, as well as the theoretical bounds on k-values
that can be obtained from such a space mapping. Furthermore,
while our exploration has helped us better understand small
unique-neighbour expanders, more theoretical work is needed
to understand how large unique-neighbour expanders behave.
Even some more practical issues, such as determining which
complexity class the problem of computing k for a given graph
belongs to, are still unresolved. Usual expansion is proven to

be coNP-complete [10]. Is the same true for unique-neighbour
expansion? We do not know. Further research into these issues
might provide us with ways to find better unique-neighbour
expanders for our various applications.
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